NF-Y Recruits Both Transcription Activator and Repressor to Modulate Tissue- and Developmental Stage-Specific Expression of Human γ-Globin Gene
نویسندگان
چکیده
The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.
منابع مشابه
Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice
Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We sh...
متن کاملBiochemical characterization of the developmental stage- and tissue-specific erythroid transcription factor, NF-E4.
Analysis of the nuclear factors responsible for erythroid gene regulation has led to the cloning of several transcriptional regulatory proteins with clear lines of evidence suggesting or demonstrating their roles in tissue-specific gene expression. However, the erythroid cell lineage-restricted proteins that have been characterized to date do not differ significantly in activity during the dist...
متن کاملThe distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes
GATA-1 and NF-E2 are erythroid specific activators that bind to the β-globin locus. To explore the roles of these activators in transcription of the human fetal stage specific γ-globin genes, we reduced GATA-1 and p45/NF-E2 using shRNA in erythroid K562 cells. GATA-1 or p45/NF-E2 knockdown inhibited the transcription of the γ-globin genes, hypersensitive site (HS) formation in the LCR and chrom...
متن کاملThe role of WDR5 in silencing human fetal globin gene expression.
BACKGROUND Histone H3 lysine 4 (K4) methylation has been linked with transcriptional activity in mammalian cells. The WD40-repeat protein, WDR5, is an essential component of the MLL complex that induces histone H3 K4 methylation, but the role of WDR5 in human globin gene regulation has not yet been established. DESIGN AND METHODS To study the role of WDR5 in human globin gene regulation, we p...
متن کاملIkaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation
Ikaros is associated with both gene transcriptional activation and repression in lymphocytes. Ikaros acts also as repressor of human γ-globin (huγ-) gene transcription in fetal and adult erythroid cells. Whether and eventually, how Ikaros can function as a transcriptional activator in erythroid cells remains poorly understood. Results presented herein demonstrate that Ikaros is a developmental-...
متن کامل